SOLAR ENERGY & ELECTRICAL POWER

Jason Brunswick
Adam Davidson
Christiana Fote
Matthew Kujawinski
Background

• Power crisis in Ghana
• Intermittent power supply
• Frequent electricity shortages
• Negative effect on economy and industry

Goals

• Improve current solar power resources
• Increase accessibility to electricity in the village
Developmental Problems that Need Engineering Solutions

1) Sustainable Solar Street Lighting
2) Solar School System
3) Electric Power Converter
4) Bicycle-Powered Generator
Deliverables

- At least one operating street light
- One operable home emergency power system
- At least one functional bicycle generator
- Educational materials
Solar Street Lighting

Problem
• Solar street lights of Akomadan Akrofoa were nonfunctional

Pre-Trip Solution
• Restore to a state of reliable functionality
• Redesign to ensure all components are easily accessible for maintenance

In-Country Solution
• Rewire control panel
Solar School System

Problem
• Solar panel system at local school was not functioning correctly

Pre-Trip Solution
• Rewire system in conjunction with newly replaced batteries
• Redesign wiring layout to make it easier to repair in the future

In-Country Solution
• Replace batteries and wiring
• Redesign wiring layout
Solar School System
Bicycle Generator

Problem
• Over 80% of people in Ghana own cell phones
• Grid power is very inconsistent
• Remote villages have no communication/electricity

Need
• Reliable, sustainable way to charge cell phones in the village

Solution
• Bicycle generator to charge cell phones
Bicycle Generator

Initial Research

• Past bicycle generator projects: IESL in Choluteca
 • Belt design much more effective (40:1 ratio of bicycle wheel to alternator)
Bicycle Generator

Initial Prototype Materials
- Motor: car alternator
 - Electromagnetic, internal regulator
- Belt (serpentine belt)
- Bike
- Stand

Other Materials
- Battery
 - 12 V, 18 amp hour deep cell
- Switch
- Inverter
 - 80 watt, voltage from 12V to 5V (USB included)
Bicycle Generator

Final Prototype Design
Bicycle Generator

Testing and Results

• Ensure bike was stable and find changes to initial design
• Ensure wiring was correct and create diagrams
• Did a sample charge on an iPhone and extrapolated result
 • Takes approximately 75 seconds to charge an iPhone 1% of its capacity
 • It would take around 2 hours to fully charge an iPhone from 0% to 100% charge
Bicycle Generator

Prototype to Ghana

Changes to be Made:

• Base was relatively unstable
 • Weld metal (angle iron)
 • Make base narrower
 • Threaded Rod

• Packaging
 • Wire ties
 • Electrical box
Bicycle Generator

GENERAL DIMENSIONS
- The height of the two vertical pillars must be at least 16 inches for stability.
- No net weight must be placed directly on the drive shaft. Instead, weights must be placed at the top of the bicycle frame.
- The base must be at least 16 inches wide to keep the bike in place when it is placed on the ground.

NOTES
- The bike will be held on the stand by the two vertical posts when the bike is placed on the stand.

PURPOSE
- The bike will be held on the stand by the two vertical posts when the bike is placed on the stand.

DRAWING
The drawing shows the overall dimensions and design of the bicycle generator stand.

Material:
- Angle iron: 2 x 2 x 3 inches

Dimensions:
- Overall length: 27,000 mm
- Overall width: 14,000 mm
- Height: 12,000 mm

Additional Notes:
- The bike will be held on the stand by the two vertical posts when the bike is placed on the stand.
- The base must be at least 16 inches wide to keep the bike in place when it is placed on the ground.

General:
- The bike will be held on the stand by the two vertical posts when the bike is placed on the stand.
- The base must be at least 16 inches wide to keep the bike in place when it is placed on the ground.

Conclusion:
- The bicycle generator stand is designed to hold the bike securely in place.
- The dimensions and materials are specified to ensure the bike is held in place and operates effectively.

References:
- The design and specifications are based on previous engineering projects and research.
Bicycle Generator

Prototype Wiring

Updated Wiring
Bicycle Generator

- Bought materials in Kumasi before travelling to Techiman
- Bargained to keep cost low
Bicycle Generator

- Artisan suggested several changes
- SolidWorks model was crucial
- New design for the weakest part of the prototype
Bicycle Generator
Bicycle Generator

- Package materials to keep protected from environment
- Emphasis on simplicity
- Changed wiring diagram
Bicycle Generator

- Education was essential for sustainability
- Appointed one person in charge
- Left instructions and wiring diagrams
Cost Analysis

Research and Development
- $400 total to spend on all projects
- Spent $177.69 on prototyping
 - Donations
- $282.31 left to use on project implementation in Ghana
- Many parts we will be able to reuse
 - Alternator, serpentine belts, battery, threaded rod
Cost Analysis

Implementation in Ghana
- $282.31 left to use on project implementation in Ghana
- Spent $251.96 in Ghana
- Final project cost of $534.27 (over budget by $134.27)
- Left extra parts for future projects
 - Angle iron, wire, threaded rod

Replication Cost
- Approximately $368.98 to replicate bicycle
Sustainability & Ownership

Plan & Implementation

• Use materials bought from local Ghanaian vendors
 • Economy
 • Easily make repairs
• Encourage collaboration with locals
 • Sense of ownership
• Opportunity to create profit and jobs
Future Recommendations

• Recommend researching a kiosk-like system with solar panels to charge cell phones
• Make wiring more sustainable
• Use pressure sensor or other way to ensure bike is being ridden while charging
• In-depth analysis of local pricings
Acknowledgements

Special Thanks to our Ghanaian partners:
Nana Odeneho
Adam Sauer
Nathan Cotton
Leslie Callihan
Greg Bixler

Ghana Correspondents:
- Honorable Kojo Appiah-Kubi
- Augustine Yeboah
- Andy Bediako
- Isaac Tenkorang
- Gyamfi Benard
- E. A. Jonas
Special Thanks to:
Mariantonieta Gutierrez-Soto and Roger Dzwonczyk
Questions?
Additional References

"BuckeyeBox Photos." BuckeyeBox. Web. 7 Dec. 2015.

"Engineering Service Learning - Choluteca." The Ohio State University EEIC Courses. The Ohio State University, n.d. Web. 16 Sept. 2015.